subunits of the dimer and that a lysine might serve as an "arm" to transfer the aldehyde equivalent as its imine between the two subsites. We note that results of biochemical characterization ${ }^{4}$ and in vitro complementation studies ${ }^{19}$ on isolated mutant subunits do not provide support for this hypothesis in its simplest form and that catalysis is more readily explained by a single active site oxidizing both the alcohol substrate and a structurally similar thiohemiacetal, hemiacetal, carbinolamine, or hydrate.

Our knowledge of aldehyde oxidations is rather poor, being based on GAPDH, which uses a thiohemiacetal, and enzymes like glucose-6-phosphate dehydrogenase that employ substrates in which the aldehyde group is present as a readily oxidized derivative. Explorations of the chemistry of HDH may reveal new paradigms for NAD-linked enzymatic oxidation.
Acknowledgment. This work was supported by a grant from the National Science Foundation (DMB87-05583). Acquisition of a Pharmacia FPLC was supported by the NYU Challenge Fund.

An Unexpected Cis Peptide Bond in the Minor Conformation of a Cyclic Hexapeptide Containing Only Secondary Amide Bonds ${ }^{\dagger}$

Horst Kessler,* Uwe Anders, and Manfred Schudok
Contribution from the Institut für Organische Chemie, J.W. Goethe-Universität, Niederurseler Hang, D-6000 Frankfurt 50, FRG. Received January 2, 1990

Abstract

The conformation of the cyclic hexapeptide cyclo(-D-Ala ${ }^{1}-$ Phe $\left.^{2}-\mathrm{Val}^{3}-\mathrm{Lys}(\mathrm{Z})^{4}-\mathrm{Trp}^{5}-\mathrm{Phe}^{6}-\right)$ [VDA008], a very potent inhibitor of the bile-acid transport system in hepatocytes, was investigated in hexadeuteriodimethyl sulfoxide solution by NMR spectroscopy and restraint MD calculations. Surprisingly, this peptide exhibits two conformations (94:6) in slow exchange on the NMR time scale at room temperature. Chemical exchange between both isomers was proven by 2D-ROESY and 2D-NOESY spectra. The dominant conformation has all-trans peptide bonds forming a $\beta I I, \beta I I^{\prime}$ backbone conformation and preferred side chain orientations similar to that of the analogue cyclo(-D-Pro-Phe-Thr-Lys(Z)-Trp-Phe-), 008, whereas the minor conformation has a cis peptide bond between $\operatorname{Lys}(Z)^{4}$ and Trp^{5} forming a $\beta \mathrm{VI}$ turn about these residues. The conformational analyses of the backbones of both conformers are based on the temperature dependences of H_{N} chemical shifts, on scalar coupling constants, and on quantitative evaluation of ROEs and NOEs for restraint MD calculations. The populations of the side chain rotamers are derived from quantitative evaluation of homonuclear coupling constants and qualitative evaluation of heteronuclear coupling constants. For the MD calculations in vacuo, the side chains are fixed in the dominant rotamers.

Introduction

The cyclic hexapeptide cyclo(-D-Ala ${ }^{1}-\mathrm{Phe}^{2}-\mathrm{Val}{ }^{3}-\mathrm{Lys}(\mathrm{Z})^{4}-$ Trp ${ }^{5}$-Phe ${ }^{6}$-) [VDA008] was synthesized in the course of struc-ture-activity studies of a number of cyclic hexapeptides, originally derived from somatostatin and antamanide, as inhibitors of a hepatocytic transport system. ${ }^{1}$ Usually only one amino acid was replaced at a time, but a comparison of various analogues suggested that replacement of D-Pro in " 008 "lh by D-Ala and Thr ${ }^{3}$ by V al would be advantageous. In fact, VDA008 turned out to be the most potent cyclic hexapeptide in the biological tests, exceeding the activity of 008 by more than an order of magnitude. ${ }^{2}$

During NMR studies of this peptide cross-peaks, unequivocally indicating a slow chemical exchange between two conformers (relative population 94:6), were found in ROESY and NOESY spectra. This study revealed that the conformers are trans-cis isomers about the $\operatorname{Lys}(Z)^{4}-\mathrm{Trp}^{5}$ peptide bond. Cis-trans isomerism about the amide bond was the first problem studied by dynamic NMR spectroscopy. ${ }^{3,4}$ It has been shown that the barrier of amide bond rotation is in the order of $80 \mathrm{~kJ} / \mathrm{mol} .{ }^{5-9}$ In secondary N -alkylamides the trans configuration is generally strongly preferred in solution; ${ }^{j-9}$ cis configurations have so far only been observed in N-methylacetamide ($1-3 \%$), ${ }^{10}$ ortho-substituted

[^0]
trans, Z

cis, E
acetanilides, ${ }^{11}$ strained cyclic structures, ${ }^{12}$ and in a small protein in micellar solution. ${ }^{13}$ On the contrary, the occurrence of cis-
(1) (a) Kessler, H.; Bernd, M.; Damm, I. Tetrahedron Lett. 1983, 23, 4685-4688. (b) Kessler, H.; Eiermann, V. Tetrahedron Lett. 1983, 23, 4689-4692. (c) Kessler, H.; Bernd, M.; Kogler, H.; Zarbock, J.; Sorensen, O. W.; Bodenhausen, G.; Ernst, R. R. J. Am. Chem. Soc. 1983, 105, 6944-6952. (d) Ziegler, K.; Frimmer, M.; Kessler, H.; Damm, I.; Eiermann, V.; Koll, S.; Zarbock, J. Biochim. Biophys. Acta 1985, 845, 86-93. (e) Kessler, H.; Klein, M.; Maller, A.; Wagner, K.; Bats, J. W.; Ziegler, K.; Frimmer, M. Angew. Chem., Int. Ed. Engl. 1986, 25, 997-999. (f) Kessler, H.; Gehrke, M.; Haupt, A.; Klein, M.; Müller, A.; Wagner, K. Klin. Wochenschr. 1986, 64, 74-78. (g) Usadel, K. H.; Kessler, H.; Rohr, G.; Kusterer, K.; Palitzsch, K. D.; Schwedes, U. Somatostatin; Reichlin, S., Ed.; Plenum Publishing Corp.: New York, 1987; pp 193-200. (h) Kessler, H.; Bats, J. W.; Griesinger, C.; Koll, S.; Will, M.; Wagner, K. J. Am. Chem. Soc. 1988, 110, 1033-1049. (i) Kessler, H.; Gemmecker, G.; Haupt, A.; Klein, M.; Wagner, K.; Will, M. Tetrahedron 1988, 44, 745-759. (j) Kessler, H.; Klein, M.; Wagner, K. Int. J. Peptide Protein Res. 1988, 31, 481-498. (k) Kessler, H.; Haupt, A.; Schudok, M.; Ziegler, K.; Frimmer, M. Int. J. Peptide Protein Res. 1988, 32, 183-193. (1) Kessler, H.; Gemmecker, G.; Haupt, A.; Lautz, J.; Will, M. NMR Spectroscopy in Drug Research; Alfred Benzon Symposium 26; Jaroszewski, J. W., Schaumburg, K., Kofod, H., Eds.; Munksgaard: Copenhagen, Denmark, 1988; pp 138-152. (m) Kessler, H.; Haupt, A.; Will, M. Computer-Aided Drug Design; Perun, T. J., Propst, C. L., Eds.; Marcel Dekker, New York, 1989; pp 461-484.
(2) Kessler, H.; Schudok, M.; Haupt, A. Peptides 1988; Jung, G., Bayer, E., Eds.; de Gruyter: Berlin, FRG, 1989; pp 664-666.
(3) Phillips, W. D. J. Chem. Phys. 1955, 23, 1363-1 364.
(4) Gutowski, H. S.; Holm, C. H. J. Chem. Phys. 1956, 25, 1228-1234.
(5) Stewart, W. E.; Siddall, T. H. Chem. Rev. 1970, 70, 517-551.
(6) Kessler, H. Angew. Chem., Int. Ed. Engl. 1970, 9, 219-235.

Figure 1. Amide proton region of the $600-\mathrm{MHz}$ ID spectrum of cyclo-(-D-Ala-Phe-Val-Lys(Z)-Trp-Phe-) [VDA008] in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ solution at 300 K . The amide proton of the valine of the minor populated conformer $\left(v^{3}-\mathrm{H}_{\mathrm{N}}\right)$ is buried under the aromatic signals at 7.32 ppm (cf. Figure 2).
peptide bonds in proline-containing peptides ${ }^{14}$ or peptides with other N -alkylated a mino acids, ${ }^{15}$ is a general phenomenon. It is notable that Boc-protected amino acids and oligopeptides usually exhibit both trans and cis conformations about the urethan bond, ${ }^{16}$ as the size of the carbonyl oxygen and the alkoxy group is comparable.

In general, steric interactions between R and R^{\prime} lead to a preference for the trans conformation in secondary amides. Cis isomers can only be observed in peptides if there is some sterical strain associated with the trans isomer. Therefore the occurrence of an additional conformer (in an amount of 6%) in the cyclic hexapeptide VDA008 was a surprising finding. Hence, careful conformational analyses were carried out for both conformers. To our knowledge the cis isomer of a non-alkylated amide bond has so far not been observed in weakly strained cyclic peptides or in linear peptides. However, the lack of a systematic search for such minor isomers in equilibrium, which requires an extremely careful analysis of high-resolution spectra, and the misinterpretation of spurious signals as impurities might be the reason for that.

Synthesis

The linear precursor of VDA008 was prepared by solid-phase synthesis ${ }^{17-19}$ by using the classical Merrifield technique with the Boc-protective group strategy as previously described. ${ }^{\text {h. } 20}$

[^1]

Figure 2. $250-\mathrm{MHz}$ proton spectra of cyclo(-D-Ala-Phe-Val-Lys(Z)-Trp-Phe-) [VDA008] in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ solution at 300 K . (COSY) Part of the DQF-H,H-COSY spectrum. Only the lowest of the negative levels is plotted. Five out of six $\mathrm{H}_{\mathrm{N}}, \mathrm{H}_{\alpha}$ cross-peaks of the minor populated conformer can clearly be seen. The lysine cross-peak is rather weak. (TOCSY) Part of the TOCSY spectrum. Only positive levels are plotted. The position of the carrier is marked with arrows. (ROESY) Part of the ROESY spectrum. Positive and negative levels are plotted without distinction.

However, methanol was used for washing instead of dimethylformamide. The peptide was synthesized as Boc-Trp-Phe-D-Ala-Phe-Val-Lys(Z)-O-R on the hydroxymethylated resin (R). Cleavage of the linear peptide was achieved with hydrazine, ${ }^{17}$ and the N-terminal Boc-protective group was removed with neat trifluoroacetic acid. Cyclization was achieved via the azide by the method of Medzihradszky. ${ }^{18}$ The cyclic peptide was finally purified by HPLC.

NMR Measurements

Conformational Analysis of VDA008. The VDA008 is very soluble in dimethyl sulfoxide but sparingly soluble in other common NMR solvents. The conformational analysis was therefore carried out in dimethyl sulfoxide. The spectrum of the H_{N}-region, where splittings between both conformations are best separated, is shown in Figure 1. Two distinct signal sets are found, and the relative ratio remains unchanged at concentrations from 3 to 64 mM (at 300 K , see Supplementary Material). Proof that the minor signals resulted from a second conformation in slow exchanging equilibrium was provided from the following: (i) On warming, the small signals broadened and finally disappeared. This process was totally reversible. (ii) In the $250-\mathrm{MHz}$ ROESY spectrum ${ }^{21-23}$ (Figure 4b), exchange signals (positive contours with respect to the diagonal) were clearly observable between pairs of small and large signals in addition to the usual ROESY cross-peaks (negative contours) within each conformation. (iii) In the $500-\mathrm{MHz}$

[^2]Table I. ${ }^{1} \mathrm{H}$ NMR Chemical Shifts ${ }^{a}(\delta)$ of VDA008 in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ Solution at 300 K

amino acid	proton	populated conformer	
		major	minor
D-Ala ${ }^{1}$	H_{N}	8.31	8.43
	H_{α}	3.93	4.05
	$\mathrm{H}_{\boldsymbol{\beta}}$	0.84	0.75
Phe ${ }^{2}$	H_{N}	8.58	8.75
	H_{α}	4.23	4.17
	H_{81}	3.24 pro-s	3.28
	H_{82}	2.81 pro-R	2.72
Val^{3}	H_{N}	$7.56{ }^{\text {proR }}$	7.32
	H_{α}	4.33	4.41
	H_{8}	2.19	2.11
	H_{7}	$0.90^{\text {b }}$	0.78
	H_{42}		0.85
Lys (Z) ${ }^{4}$	H_{N}	8.16	8.09
	H_{α}	3.54	3.47
	H_{81}	1.52	
	H_{82}	1.28	$0.95{ }^{\text {b }}$
	H_{71}	1.12	c
	H_{72}	0.93	c
	H_{8}	$1.28{ }^{\text {b }}$	c
	H_{4}	$2.88{ }^{\text {b }}$	c
	$\mathrm{H}_{\mathrm{N}_{t}}$	7.19	c
	$\mathrm{Z}_{-\mathrm{CH}_{2}-}$	5.02	${ }^{c}$
Trp ${ }^{5}$	H_{N}	7.75	7.61
	H_{a}	4.16	4.59
	$\mathrm{H}_{\beta 1}$	3.30 pro-R	3.30
	$\mathrm{H}_{\beta 2}$	3.22 pro-s	2.81
	indole- H_{N}	10.79	10.85
	indole- H_{2}	7.07	c
	indole- H_{7}	7.33	${ }^{c}$
Phe ${ }^{6}$	H_{N}	7.82	8.20
	H_{α}	4.47	4.54
	$\mathrm{H}_{\beta 1}$	3.01 pro-R	3.01
	$\mathrm{H}_{\beta 2}$	2.90 pro-s	2.80

${ }^{a}$ Chemical shifts of the 64 mM sample in ppm relative to $\mathrm{Me}_{2} \mathrm{SO}-d_{s}$ $=2.50 \mathrm{ppm} .{ }^{b}$ Degenerated proton signals. ${ }^{c}$ Not determined.

NOESY spectrum ${ }^{24}$ (Figure 4c), again exchange peaks were seen besides the NOEM cross-peaks (all positive with respect to the diagonal).

In order to distinguish the amino acids of the major and minor populated conformer, the one- and three-letter abbrevations of the amino acids of the minor conformer are not capitalized.

Assignment of the NMR Spectra. All amino acid residues of the major conformer were identified in the DQF-H,H-COSY spectrum ${ }^{25,26}$ according to their characteristic pattern of chemical shifts ${ }^{27,28}$ (Table I). From the TOCSY spectrum ${ }^{29,30}$ (Figures 2 and 5) all amino acids, except lysine of the minor populated conformer, could be identified.

The distinction of the three aromatic amino acids of the major conformer, which exhibit identical spin patterns in the DQF-H,H-COSY spectrum and the TOCSY spectrum, was made by sequence analysis with an H,C-COLOC spectrum ${ }^{31}$ (Figure 3). Due to the low population of only 6%, this was not possible for the minor conformer. The cross-peak between the d-Ala ${ }^{1} \beta$ protons and a ${ }^{13} \mathrm{C}$ signal at 171.95 ppm unequivocally assigned the D -Ala ${ }^{1}$ carbonyl carbon. Hence, the amide proton coupling to this carbonyl carbon must be the $\mathrm{Ph}^{2}-\mathrm{H}_{\mathrm{N}}$ proton. Two $\alpha-$

[^3]Table II. ${ }^{13} \mathrm{C}$ Chemical Shifts ${ }^{a}(\delta)$ of the Major Populated Conformer of VDA008 in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ Solution at 300 K

	D-Ala ${ }^{1}$	Phe ${ }^{2}$	Val^{3}	Lys(Z) ${ }^{4}$	Trp ${ }^{5}$	Phe ${ }^{6}$
C^{\prime}	172.95	171.16	171.35	171.47	171.45	170.24
C_{α}	49.45	55.18	57.21	55.95	55.65	54.99
C_{B}	16.09	36.59	35.93	30.82	26.37	37.90
C_{4}			$\begin{aligned} & 17.79 \\ & 19.62 \end{aligned}$	22.75		
C_{6}				30.07		
C_{6}				40.19		
$\mathrm{Z}_{-\mathrm{CH}_{2}-}$				65.33		

Table III. ${ }^{3} J_{H, H}$ Coupling Constants ${ }^{a}$ of VDA008 and Populations of the Side-Chain Rotamers of $\mathrm{Phe}^{2}, \mathrm{Val}^{3}, \mathrm{Trp}^{5}$, and Phe ${ }^{6}$

	$\begin{gathered} { }^{3} J_{\mathrm{H}_{2}} \cdot \mathrm{H}_{\mathrm{n}}{ }^{b} \\ \mathrm{~Hz}^{b} \end{gathered}$	$\begin{gathered} { }^{3} J_{\mathrm{H}_{\alpha} \cdot \mathrm{H}_{81}}{ }^{6} \\ \mathrm{~Hz} \end{gathered}$	$\begin{gathered} { }^{3} J_{H_{q} \cdot H_{02}}{ }^{c} \\ \mathrm{~Hz}^{2} \end{gathered}$	$P_{1}{ }^{\text {d }}$ \%	$P_{11}{ }^{\text {d }}$ \%	$P_{111}{ }^{\text {d }}$ \%
D-Ala ${ }^{1}$	5.4					
D-ala ${ }^{1}$	6.2					
Phe ${ }^{2}$	8.7	3.5 pro-S	11.5 pro-R	81	8	11
phe ${ }^{2}$	8.6	3.1	12.0	$(85$	4) ${ }^{\text {e }}$	10
Val^{3}	9.4	6.0			31%	
val ${ }^{3}$	9.3	4.5			178	
Lys (Z) ${ }^{4}$	4.3	g	g			
$l y s(Z)^{4}$	5.2	g	g			
Trps	7.3	10.2 pro-R $^{\text {h }}$	4.3 pro- S^{h}	69	16	15
$t r p^{5}$	10.7	3.4	11.2	(79	7) ${ }^{\text {e }}$	14
Phe ${ }^{6}$	6.4	$5.7{ }_{\text {pro-R }}{ }^{h}$	8.4 pro-S ${ }^{\text {h }}$	28	53	19
phe ${ }^{6}$	6.6	4.9	9.5	(20	63) ${ }^{\text {e }}$	17

${ }^{a}$ Values in $\mathrm{Hz} \pm 0.1 \mathrm{~Hz}$. The noncapitalized three-letter abbreviations are the amino acids of the minor populated conformer. ${ }^{b}$ Obtained from ID spectra of VDA008. ' Obtained from a complementary E.COSY spectrum at $600 \mathrm{MHz} .{ }^{d} \mathrm{I}: \chi_{1}=60^{\circ}$. II: $\chi_{1}=$ 180°. III: $\chi_{1}=+60^{\circ}$. 'As the prochiral protons are not assigned, populations I and II cannot be distinguished. 'Only the population of rotamer 11 can be calculated. ${ }^{8}$ Not determined. ${ }^{h}$ Not weakly coupled.

Table IV. Temperature Dependence ${ }^{a}$ of the Amide Proton Chemical Shifts in $-\Delta \delta / \Delta T$ ($\mathrm{ppb} / \mathrm{K}$)

	D-Ala 1	Phe 2	Val^{3}	Lys $\left.^{2} \mathrm{Z}\right)^{4}$	Trp 5	Phe 6
major pop. conformer	5.6	5.4	2.5	2.8	4.0^{6}	2.1
minor pop. conformer	5.1	5.0	1.0^{c}	3.1	5.8^{c}	1.5

${ }^{a}$ Determined in the range of 300 to $340 \mathrm{~K} .{ }^{b}$ The temperature gradient of the indole- H_{N} is $2.9 \mathrm{ppb} / \mathrm{K}$. ${ }^{\text {c }}$ Determined with the aid of a $250-\mathrm{MHz}$ TOCSY spectrum at 320 K .
protons couple to the carbonyl at 171.47 ppm ; one is the Lys-$(\mathrm{Z})^{4}-\mathrm{H}_{\alpha}$ and the other is the $\operatorname{Trp}^{5}-\mathrm{H}_{\alpha}$. If two α-protons couple to the same carbonyl carbon, it has to be the one between them. The carbonyl is therefore $\mathrm{Lys}(Z)^{4}-\mathrm{C}^{\prime}$. The cross-peak between the amide proton of Trp^{5} and the carbonyl carbon of $\operatorname{Lys}(Z)^{4}$ is proof of the successful cyclization. The tryptophan α-proton shows a cross-peak not only to the lysine carbonyl but also to its own carbonyl carbon at 171.45 ppm . Another amide proton coupling to this carbonyl is Phe $-\mathrm{H}_{\mathrm{N}}$. The amide protons of the nonaromatic amino acids exhibit cross-peaks to the carbonyl carbons of the preceding amino acids.

The spin systems of the aromatic amino acids of the minor conformer can be assigned via the exchange peaks in the ROESY ${ }^{21-23}$ and NOESY ${ }^{23}$ spectra (Figure 4). In the ROESY spectrum five pairs of cross-peaks were found within the H_{N}-region having the same sign as the diagonal, thus indicating chemical exchange between the two conformers. As the amide proton of the valine of the minor conformer is buried under the aromatic signals and the corresponding signal of the major conformer is very close to the aromatic signals, no cross-peak due to exchange for these signals could be identified. In the NOESY spectrum (Figure 4c), nuclear Overhauser effects and exchange peaks cannot be distinguished by their sign. However, as the $500-\mathrm{MHz}$ NOESY spectrum is much better resolved than the $250-\mathrm{MHz}$ ROESY spectrum, the cross-peaks due to exchange can be seen more clearly. Additionally, peaks due to exchange can be found within the α-proton region of these spectra (Figure 6). Hence it is

Figure 3. H,C-COLOC spectrum of the carbonyl region of cyclo(-D-Ala-Phe-Val-Lys(Z)-Trp-Phe-) [VDA008] in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ solution at 300 $K\left({ }^{1} \mathrm{H} \hat{=} 300 \mathrm{MHz}\right.$, power spectrum). The annotations indicate the protons that couple to the respective carbonyl carbons whose assignment is given above. The indole- H_{N} was folded back for optimization of the resolution in the proton dimension.
obvious that the minor conformer is not an impurity.
The chemical shifts of the aliphatic carbons of the major populated conformer (Table II) were extracted from a DEPT$\mathrm{H}, \mathrm{C}-\mathrm{COSY}$ spectrum ${ }^{32-35}$ (see supplementary material). It is remarkable that the valine γ-protons are degenerate whereas the corresponding carbon atoms have a chemical shift difference of almost 2 ppm .

Extraction of Conformationally Relevant NMR Parameters. Important parameters for conformational analysis include scalar coupling constants of vicinal protons from which dihedral angles can be derived via Karplus equations. ${ }^{36-39}$ Distances between protons can be derived from dipolar proton-proton couplings. Besides these parameters, temperature dependencies of amide proton chemical shifts (Table IV) indicate the orientation of these protons. ${ }^{38}$

The $\mathrm{H}_{\alpha}, \mathrm{H}_{\mathrm{N}}$ coupling constants were extracted directly from a ID spectrum after resolution enhancement (Table III). Equivalent information was derived from the $\mathrm{H}_{\alpha}, \mathrm{H}_{\mathrm{N}}$ region of the DQF-H,H-COSY spectrum (see supplementary material), which was especially helpful in the case of the minor conformer.

For the determination of the populations of the side chain rotamers, the $\mathrm{H}_{\beta}, \mathrm{H}_{\alpha}$ coupling constants are needed. ${ }^{40}$ From a $600-\mathrm{MHz}$ E.COSY spectrum ${ }^{41.42}$ these coupling constants could easily be extracted for the aromatic amino acids of both conformers

[^4]Table V. Comparison of Proton-Proton Distances Obtained from ROESY and NOESY Spectra with Those from the MD Calculation (for the Major Populated Conformer of VDA008)

no.	involved protons		$\begin{gathered} d(\mathrm{H}, \mathrm{H})^{\exp } \\ \mathrm{pm} \end{gathered}$	$\underset{\mathrm{pm}}{d(\mathrm{H}, \mathrm{H})^{\mathrm{MD}}}$	Δ
1.	D-Ala ${ }^{1}-\mathrm{H}_{\mathrm{N}}$	D-Ala ${ }^{1}-\mathrm{H}_{\alpha}$	260	278	18
2.	D-Ala ${ }^{1}-\mathrm{H}_{\mathrm{N}}$	D-Ala ${ }^{1}-\mathrm{H}_{\beta}$	$334{ }^{\text {a }}$	269	$(-65)^{\text {b }}$
3.	D-Ala ${ }^{1}-\mathrm{H}_{\mathrm{N}}$	Phe ${ }^{6}-\mathrm{H}_{\mathrm{N}}$	335	367	32
4.	D-Ala ${ }^{1}-\mathrm{H}_{\mathrm{N}}$	Phe ${ }^{6}-\mathrm{H}_{\alpha}$	217	226	9
5.	D-Ala ${ }^{1}-\mathrm{H}_{\alpha}$	Phe ${ }^{2}-\mathrm{H}_{\mathrm{N}}$	207	209	2
6.	Phe ${ }^{2}-\mathrm{H}_{\mathrm{N}}$	Phe ${ }^{2}-\mathrm{H}_{\alpha}$	275	279	4
7.	Phe ${ }^{2}-\mathrm{H}_{\mathrm{N}}$	$\mathrm{Val}{ }^{3}-\mathrm{H}_{\mathrm{N}}$	237	260	23
8.	Phe ${ }^{2}-\mathrm{H}_{\alpha}$	$\mathrm{Val}{ }^{3}-\mathrm{H}_{\mathrm{N}}$	282	345	63
9.	$\mathrm{Val}^{3}-\mathrm{H}_{\mathrm{N}}$	$\mathrm{Val}{ }^{3}-\mathrm{H}_{\alpha}$	279	289	10
10.	$\mathrm{Val}^{3}-\mathrm{H}_{\mathrm{N}}$	$\mathrm{Val}{ }^{3}-\mathrm{H}_{\beta}$	308	363	55
11.	$\mathrm{Va}{ }^{3}-\mathrm{H}_{a}$	$\mathrm{Val}{ }^{3}-\mathrm{H}_{B}$	250	250	0
12.	$\mathrm{Va}{ }^{3}-\mathrm{H}_{\alpha}$	Lys ${ }^{4}-\mathrm{H}_{\mathrm{N}}$	224	243	19
13.	$\mathrm{Val}{ }^{3}-\mathrm{H}_{\beta}$	Lys ${ }^{4}-\mathrm{H}_{\mathrm{N}}$	234	241	7
14.	Lys ${ }^{4}-\mathrm{H}_{\mathrm{N}}$	Lys ${ }^{4}-\mathrm{H}_{\alpha}$	247	263	16
15.	Lys ${ }^{4}-\mathrm{H}_{\alpha}$	Trp ${ }^{5}-\mathrm{H}_{\mathrm{N}}$	224	210	-14
16.	$\mathrm{Trp}^{5}-\mathrm{H}_{\mathrm{N}}$	Trp ${ }^{5}-\mathrm{H}_{\alpha}$	228	208	-20
17.	Trp ${ }^{5}-\mathrm{H}_{\alpha}$	Phe ${ }^{6}-\mathrm{H}_{\mathrm{N}}$	293	344	51
18.	Phe ${ }^{6}-\mathrm{H}_{\mathrm{N}}$	Phe ${ }^{6}-\mathrm{H}_{a}$	291	293	2

${ }^{a} 100 \mathrm{pm}$ were added to the determined "distance" for taking into account the methyl group. ${ }^{48,49}$ bo restraint violation.

Table VI. Hydrogen Bonds ${ }^{a}$ Occurring during 40-ps Restraint Molecular Dynamics Calculation of the Major Populated Conformer of VDA008

donor	acceptor	$d(\mathrm{H} \cdots \mathrm{A}),^{\text {b }} \mathrm{pm}$	$\begin{gathered} \theta, c \\ \text { deg } \end{gathered}$	pop. \%	type
D-Ala ${ }^{\text {1 }}$ - ${ }_{\text {N }}$	Trp ${ }^{\text {- }}$ CO	229	138	25	
Phe ${ }^{2}-\mathrm{H}_{\mathrm{N}}$	Phe ${ }^{6}$-CO	222	125	2	
Val ${ }^{3}-\mathrm{H}_{\mathrm{N}}$	Phe ${ }^{6}$-CO	217	156	78	β II $^{\prime}$
Phe ${ }^{6}-\mathrm{H}_{\mathrm{N}}$	$\mathrm{Val}^{3}-\mathrm{CO}$	210	141	42	β II
Phe ${ }^{6}-\mathrm{H}_{\mathrm{N}}$	Lys ${ }^{4}$-CO	206	144	81	γ
Phe ${ }^{6}-\mathrm{H}_{\mathrm{N}}$	$\left\{\begin{array}{l}\mathrm{Val} \\ \\ \\ \text { - } \\ \text { co }\end{array}\right.$	218	$133\}^{d}$	20	
Phe $-\mathrm{H}_{\mathrm{N}}$	1 Lys4-CO	218	133)	20	

${ }^{6}$ Definition of hydrogen bonds: the $\mathrm{H} \cdots \mathrm{A}$ distance is shorter than 250 pm and the $\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$ angle θ is greater than 120°. ${ }^{b}$ Distance between donor proton and acceptor oxygen. ${ }^{c}$ The $\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$ angle. ${ }^{d}$ Bifurcated hydrogen bridge.

Table VII. Comparison of Proton-Proton Distances Obtained from ROESY and NOESY Spectra with Those from the MD Calculation (for the Minor Populated Conformer of VDA008)

no.	involved protons		$d(\mathrm{H}, \mathrm{H})^{\text {exp }}$, pm	$d(\mathrm{H}, \mathrm{H})^{\mathrm{MD}}$ pm	Δ
1.	D-ala $^{1}-\mathrm{H}_{\mathrm{N}}$	D-ala $^{1}-\mathrm{H}_{\beta}$	345^{a}	268	$(-77)^{b}$
2.	D-ala $-\mathrm{H}_{\mathrm{N}}$	phe $^{6}-\mathrm{H}_{\alpha}$	210	227	17
3.	D-ala $-\mathrm{H}_{\alpha}$	phe $^{2}-\mathrm{H}_{\mathrm{N}}$	209	211	2
4.	val $^{3}-\mathrm{H}_{\alpha}$	val $^{3}-\mathrm{H}_{\beta}$	232	250	18
5.	val $^{3}-\mathrm{H}_{\alpha}$	lys $^{4}-\mathrm{H}_{\mathrm{N}}$	224	230	6
6.	val $^{3}-\mathrm{H}_{\beta}$	lys $^{4}-\mathrm{H}_{\mathrm{N}}$	246	330	84
7.	lys $^{4}-\mathrm{H}_{\mathrm{N}}$	lys $^{4}-\mathrm{H}_{\alpha}$	282	274	-8
8.	lys $^{4}-\mathrm{H}_{\alpha}$	trp $^{5}-\mathrm{H}_{\alpha}$	191	159	-32
9.	trp $^{5}-\mathrm{H}_{\alpha}$	phe $^{6}-\mathrm{H}_{\mathrm{N}}$	254	265	11

" 100 pm were added to the determined "distance" for taking into account the methyl group. ${ }^{48,49}$ b No restraint violation.
(see supplementary material) (Table III). The $\mathrm{H}_{\beta}, \mathrm{H}_{\alpha}$-coupling constants of the valine residues could be extracted from the ID and the E.COSY spectra.

For the determination of proton-proton distances, two ROESY spectra with 50 and 100 ms mixing time, respectively, were recorded at 250 MHz and, in addition, a NOESY spectrum at 500 MHz with a mixing time of 200 ms was recorded. The ROESY spectra were used to determine relative buildup rates in a completely iterative way. All three spectra were analyzed in terms of the linear approximation of the two-spin approximation, where simply the volume intergral of a cross-peak is proportional to d^{-6}. The distances were calibrated as follows for the major conformer: often the indole- H_{N}, indole- H_{7} cross-peak of tryptophan (distance 282 pm) is used for calibration. However, this distance is fairly

Figure 4. Region of the amide protons of the ROESY (a and b) and NOESY spectrum (c), respectively, of cyclo(-D-Ala-Phe-Val-Lys(Z)-Trp-Phe-) [VDA008] in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ solution at 300 K . (a) Negative levels of the $250-\mathrm{MHz}$ ROESY spectrum. The cross-peaks show rotating frame Overhauser effects (ROEs). The 1D spectrum was also recorded at 250 MHz . (b) Positive levels of the $250-\mathrm{MHz}$ ROESY spectrum. The diagonal and the cross-peaks due to exchange are visible. (c) Positive levels of the $500-\mathrm{MHz}$ NOESY spectrum. The negative levels do not contain cross-peaks. The ID spectrum was also recorced at 500 MHz .
long and therefore the volume integral of the cross-peak is not as accurate as the volume integral of a much stronger cross-peak associated with a shorter distance. Therefore an alternative approach was used here. The cross-peak between the β-protons of phenylalanine 2 is strong in the NOESY spectrum and corresponds to a distance of 176 pm . With these data the D-Ala ${ }^{1}-\mathrm{H}_{\alpha}$ to Phe ${ }^{2}-\mathrm{H}_{\mathrm{N}}$ distance was determined to be 207 pm , which is reasonable. This distance was then used for calibration. The in-dole- $\mathrm{H}_{\mathrm{N}}-\mathrm{H}_{7}$ distance was correctly calculated on this basis within experimental error. The resulting distances are given in Tables V and VII.

Conformational Analysis of the Major Populated Conformer

Starting Conformation of the Backbone. As VDA008 is an analogue of 008 the conformations of both could be similar. The temperature dependencies of the amide protons are not strongly different from each other within VDA008 (Table IV). Nevertheless, the amide protons of Val^{3} and Phe^{6} show the typically small temperature dependency for amino acids in position $i+3$ of β turns. Thus a β, β structure as in 008 was likely. The temperature dependencies of the other H_{N} protons support this.

In a β II or β II' turn the $\mathrm{H}_{\alpha}{ }^{i+1}-\mathrm{H}_{\mathrm{N}}{ }^{i+2}$ proton-proton distance is short (about 210 pm). whereas this distance is much longer in a $\beta \mathrm{I}$ or $\beta \mathrm{I}^{\prime}$ turn (approximately 340 pm). In both ROESY and NOESY spectra very intense cross-peaks were found between D-Ala ${ }^{1}-\mathrm{H}_{\alpha}$ and $\mathrm{Phe}^{2}-\mathrm{H}_{\mathrm{N}}$ and also between $\mathrm{Lys}(\mathrm{Z})^{4}-\mathrm{H}_{\alpha}$ and $\mathrm{Trp}^{5}-\mathrm{H}_{\mathrm{N}}$. Henceforth, the major populated conformer adopts a $\beta \mathrm{II}^{\prime}, \beta$ II structure with Phe^{6} and Val^{3} in position i of the turn respectively. In the H,C-COLOC spectrum (Figure 3), a cross-peak between $\mathrm{Trp}^{5}-\mathrm{H}_{\alpha}$ and $\mathrm{Lys}(\mathrm{Z})^{4}-\mathrm{C}^{\prime}$ is found. This α proton to carbonyl cross-peak can only be observed if both atoms are antiperiplanar, as in the case of a β II turn. On the contrary the corresponding region of 008 was found to exist as a $\beta \mathrm{I}$ turn. ${ }^{\text {Ih }}$ This difference can be explained as a result of the hydrogen bond
between the amide proton of tryptophan and the hydroxyl oxygen of threonine, thus yielding a β I turn in 008.

Side-Chain Conformations. In peptides side chains are usually much more flexible than the backbone. Nevertheless, it is possible to identify preferred orientations. For this it is reasonable to assume that the three staggered rotamers, with respect to the torsion angle χ_{1} about the $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ bond, are dominantly populated. From the vicinal $\mathrm{H}_{\alpha}-\mathrm{H}_{\beta}$ coupling constants of amino acids with two β-protons, the populations of these rotamers can be calculated according to Pachler ${ }^{40}$ (Table III). The required assignment of the prochiral β-protons can be derived with the aid of the H ,-C-COLOC spectrum (Figure 3). ${ }^{1 h, 43.44}$

As valine has only a single β-proton, the populations of the side-chain rotamers cannot be determined directly by this procedure. ${ }^{1 \mathrm{~h}, 43}$ The population of the rotamer in which the α - and β-proton are antiperiplanar ($\chi_{1}=180^{\circ}$) is 31%. The strong ROE or NOE between the $\mathrm{Val}^{3}-\mathrm{H}_{8}$ and $\mathrm{Lys}(\mathrm{Z})^{4}-\mathrm{H}_{\mathrm{N}}$ and the absence of a $\mathrm{Val}^{3}-\mathrm{H}_{\beta}-\mathrm{C}^{\prime}$ cross-peak in the $\mathrm{H}, \mathrm{C}-\mathrm{COLOC}$ spectrum indicate that the dominant conformation is with the amide nitrogen and the β-proton antiperiplanar to each other ($\chi_{1}=-60^{\circ}$).

Refinement of the Conformation by MD Calculation. The proton-proton distances, determined from ROESY and NOESY spectra, have been used in constrained molecular dynamics (MD) calculations in vacuo with use of the GROMOS program ${ }^{45}$ for the refinement of the structure. The determined distances restrain the conformation more or less to that found in solution. ${ }^{46-48}$ As

[^5]

Figure 5. $500-\mathrm{MHz}$ ID proton spectrum of cyclo(-D-Ala-Phe-Val-Lys-(Z)-Trp-Phe-) [VDA008] in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ solution at 300 K (on top) and sums of traces of the $250-\mathrm{MHz}$ TOCSY spectrum (Figure 2) over the amide proton signals of the indicated amino acids along F_{1}. The traces are scaled arbitrarily. As val ${ }^{3}-\mathrm{H}_{\mathrm{N}}$ is buried under the aromatic signals, a summation is worthless along F_{1} due to the strong t_{1} noise.
charges are partially shielded by the solvent, the charges of amide protons exposed to the solvent (cf. Table IV) were reduced for the calculation in vacuo to take account of solvation effects. ${ }^{\text {lh }}$ In this way formation of additional intramolecular hydrogen bridges is suppressed: the charge of $\mathrm{Phe}^{6}-\mathrm{H}_{\mathrm{N}}(-\Delta \delta / \Delta T=2.1 \mathrm{ppb} / \mathrm{K})$ was not reduced while that of $\mathrm{Ala}^{1}-\mathrm{H}_{\mathrm{N}}(-\Delta \delta / \Delta T=5.6 \mathrm{ppb} / \mathrm{K})$ was reduced to 25% (cf. Table IV). The effective charges of the other amide protons were interpolated linearly. ${ }^{1 \mathrm{~h}}$

The Z-protection group was not included in the MD calculations; the effective charge of the Lys ${ }^{4}-\mathrm{H}_{\mathrm{N}}$ was reduced to 25% to minimize artificial effects of the side chain on the backbone. Certainly, solvent effects are also important for the conformation of the backbone and especially the side chains. However, the solvent effects are mimicked by the experimental restrains used in the MD calculations. Hence we assume that the influence of the omission of the Z-protection group is minor.
(46) Lautz, J.; Kessler, H.; Boelens, R.; Kaptein, R.; van Gunsteren, W F. Int. J. Peptide Protein Res. 1987, 30, 404-414.
(47) Lautz, J.; Kessler, H.; Kaptein, R.; van Gunsteren, W. F. J. Comp Aided Mol. Design 1987, 1, 219-241.
(48) van Gunsteren, W. F.; Boelens, R.; Kaptein, R.; Scheek, R. M.; Zuiderweg, E. R. P. Molecular Dynamics and Protein Structure; Hermans, J., Ed.; Polycrystal Book Service: Western Springs, IL, 1985; pp 92-99.

Figure 6. Region of the α-protons of the ROESY (a) and NOESY spectra (b) of cyclo(-D-Ala-Phe-Val-Lys(Z)-Trp-Phe-) [VDA008] in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ solution at 300 K . The asterisks indicate an unknown impurity. (a) $250-\mathrm{MHz}$ ROESY spectrum. Positive and negative levels are plotted without distinction. The 1D spectrum was recorded under identical conditions. (b) Positive levels of the $500-\mathrm{MHz}$ NOESY spectrum. The negative levels do not contain cross-peaks. The ID spectrum is recorded at 500 MHz .

Table VIII. Hydrogen Bonds ${ }^{a}$ Occurring during 40-ps Restraint Molecular Dynamics Calculation of the Minor Populated Conformer of VDA008

donor	acceptor	$d(\mathrm{H} \cdots \mathrm{A}),^{6} \mathrm{pm}$	$\begin{gathered} \theta c^{c} \\ \operatorname{deg} \end{gathered}$	pop., \%	type
ala $^{1}-\mathrm{H}_{N}$	trp ${ }^{\text {- }} \mathrm{CO}$	232	134	17	
phe ${ }^{2}-\mathrm{H}_{\mathrm{N}}$	phe ${ }^{6}-\mathrm{CO}$	223	125	1	
val ${ }^{3}-\mathrm{H}_{\mathrm{N}}$	phe ${ }^{6}$ - CO	219	149	65	$\beta \mathrm{II}^{\prime}$
lys ${ }^{4}-\mathrm{H}_{\mathrm{N}}$	phe ${ }^{2}$-CO	227	135	14	
phe ${ }^{6}-\mathrm{H}_{\mathrm{N}}$	$\mathrm{val}^{3}-\mathrm{CO}$	189	153	94	β VI

${ }^{a}$ Definition of hydrogen bonds: the $\mathrm{H} \cdots \mathrm{A}$ distance is shorter than 250 pm and the $\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$ angle is greater than 120°. ${ }^{6}$ Distance between donor proton and acceptor oxygen. ${ }^{c}$ The $\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$ angle. ${ }^{d}$ Bifurcated hydrogen bridge.

The basic starting structure was that of $008 .{ }^{\text {lh }}$ The side chains of Phe ${ }^{2}$, Trp ${ }^{5}$, and Phe ${ }^{6}$ were kept in the experimentally determined dominantly populated conformations by dihedral constrains. If the side chains are unconstrained, according to the experimental conformational equilibrium, they often adopt minor populated conformations in the calculation: If molecular dynamics calculations in vacuo would be carried out without constraints, the peptide would adopt the maximum folded conformation, maximizing van der Waals interactions. ${ }^{\text {1h }}$ The usual constraints between Lys $(\mathrm{Z})^{4}-\mathrm{H}_{\alpha}, \mathrm{Trp}^{5}-\mathrm{H}_{\mathrm{N}}$, and $\mathrm{Trp}^{5}-\mathrm{H}_{\alpha}$ (cf. Experimental Section) were not strong enough to change the β I loop of 008 into the β II loop of VDA008. Hence, ten-times higher force constances were applied during energy minimization and 10 ps molecular dynamics simulation to yield the appropriate starting structure.

Subsequently the MD calculation was carried out as outlined in the Experimental Section. The resulting averaged structure over 40 ps trajectory of restraint MD (cf. Experimental Section) is shown in Figure 7 (above) and the results are given in Tables V, VI, and IX. The experimental NMR data are well enough represented in the calculation.

The total potential energy was $229 \mathrm{~kJ} / \mathrm{mol}$ on average. The averaged difference of the distance constraints of all 18 distances was 9 pm with a total restrain energy of $18 \mathrm{~kJ} / \mathrm{mol}$. The larger deviations are found in cases where ROEs or NOEs were less

Figure 7. Mean conformations of cyclo(-D-Ala-Phe-Val-Lys-Trp-Phe-) [VDA008] without the Z-protection group, obtained by restraint MD calculations: (above) Major conformer (94% populated in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ solution); (below) minor conformer (6% populated). The protons bound to carbon are not shown here.

Table IX. Comparison of Backbone Angles of the Averaged MD Structures and the Experimental Angles

amino acid	$\varphi^{\text {exp.a }} \mathrm{deg}$	$\varphi^{\mathrm{MD}, \mathrm{b}} \mathrm{deg}$	$\psi^{M D}$	ω^{MD}
D-Ala ${ }^{\text {a }}$	75	64 (11)	-106 (10)	-179(6)
Phe ${ }^{2}$	-98	-69 (12)	-31 (13)	173 (7)
Val ${ }^{3}$	-105	-106 (15)	162 (9)	179 (7)
Lys ${ }^{4}$	-68	-42 (13)	117 (12)	-176(7)
Trp ${ }^{5}$	77	75 (11)	-35 (20)	-178 (7)
Phe ${ }^{6}$	-81	-110 (20)	83 (11)	173 (7)
D-ala ${ }^{\text {a }}$	80	63 (10)	-114 (10)	178 (6)
phe ${ }^{2}$	-97	-65 (14)	-39 (12)	176 (7)
val ${ }^{3}$	-104	-95 (14)	115 (40)	-172 (9)
lys ${ }^{4}$	-74	-63 (27)	120 (10)	3 (14)
trp ${ }^{5}$	-120°	-111 (12)	49 (30)	174 (8)
phe ${ }^{6}$	-83, -158 ${ }^{\text {d }}$	-120 (30)	85 (12)	-173 (10)

${ }^{\text {a }}$ The φ angle determined via the Karplus relation that is closest to the value determined by MD calculation. ${ }^{b}$ RMS fluctuations (averaged over 40 ps). ${ }^{c}$ The ${ }^{3} J_{\mathrm{H}_{N}, \mathrm{H}_{\alpha}}$ coupling constant is 10.7 Hz and is thus larger than the maximum value in the Karplus relation. ${ }^{d}$ Both values are possible according to the MD calculation.
precise. No distance constraints were used for the side chains of the aromatic amino acids as ROEs or NOEs between the backbone and protons of rotating side chains cannot be well transformed into distances due to the d^{-6} dependency between Overhauser effects and distances. The average dihedral restrain energy was $4 \mathrm{~kJ} / \mathrm{mol}$ for those three aromatic side chains.

The proposed β II' turn, with Phe^{6} in position i, was populated at 78% during the MD simulation (Table VI). Within this turn, a hydrogen bond between $\mathrm{Phe}^{2}-\mathrm{H}_{\mathrm{N}}$ and $\mathrm{Phe}^{6}-\mathrm{CO}$ is found at 2%. The backbone angles in this part of the peptide are in good accordance with the experimental values (Table IX) and close to
the values for an ideal $\beta \mathrm{II}^{\prime}$ turn
In the other hemisphere of the peptide, the postulated β II turn with Val^{3} in position i is only populated at 42%. A γ turn with Lys 4 in position j is dominating (81% populated). Additionally, a bifurcated hydrogen bond is found here. The amide proton of Phe ${ }^{6}$ bridges to Val^{3} and Lys ${ }^{4}$ carbonyl oxygens (20% populated). Comparison of the angles found by MD and those for ideal turns reveals that the ψ angle of Trp^{5} is just between that of a β II and a γ turn (Figure 8).

Besides these turns another loop between $\mathrm{Ala}^{1}-\mathrm{H}_{\mathrm{N}}$ and $\mathrm{Trp}^{5}-\mathrm{CO}$ is populated at 25%. This bridge forms due to a folding of the molecule along an axis running through amino acids Val^{3} and Ph^{6}.

Conformational Analysis of the Minor Populated Conformer

Backbone Conformation. The temperature dependencies of the amide proton chemical shifts in the minor populated conformer are stronger differentiated than those of the major conformer (Table IV). The amide protons of val^{3} and phe ${ }^{6}$ show the lowest values ($-\Delta \delta / \Delta T=1.0$ and $1.5 \mathrm{ppb} / \mathrm{K}$, respectively), typical of an internal orientation. The amide proton of trp ${ }^{s}$ is clearly externally orientated ($-\Delta \delta / \Delta T=5.8 \mathrm{ppb} / \mathrm{K}$). In the ROESY ${ }^{21-23}$ and NOESY ${ }^{24}$ spectra (Figure 6) strong Overhauser effects are found between D-ala ${ }^{1}-\mathrm{H}_{\alpha}$ and phe ${ }^{2}-\mathrm{H}_{\mathrm{N}}$ and between lys $(\mathrm{Z})^{4}-\mathrm{H}_{\alpha}$ and $\operatorname{tr}^{5}-\mathrm{H}_{\alpha}$. According to these findings, the minor populated conformer has a $\beta \mathrm{II}^{\prime}, \beta \mathrm{VI}$ structure with phe ${ }^{6}$ and val ${ }^{3}$ in position i, respectively. In the $\beta \mathrm{VI}$ turn the cis peptide bond occurs between lysine and tryptophan, otherwise the rather strong Overhauser effect between the respective α-protons could not be explained. All $\mathrm{H}_{\mathrm{N}} \cdot \mathrm{H}_{\alpha}$ coupling constants in the minor populated conformer are very similar to those of the major conformer except for tryptophan (Table III). In the trp ${ }^{5}$ this coupling is 10.7 Hz , indicating that the amide and α-protons are antiperiplanar. In fact, this value is even larger than the maximum of the usual

Karplus relations, ${ }^{37,39}$ which are derived from trans configurated amide bonds. Nevertheless, there is no doubt about the antiperiplanar orientation of these two protons.

Side-Chain Conformations. The $\mathrm{H}_{\alpha}, \mathrm{H}_{\beta}$ coupling constants of the three aromatic amino acids of the major and the minor populated conformer are similar; the maximum difference is 1.1 Hz between corresponding amino acids (Table III). One feature is remarkable: the larger α, β-coupling constant in tryptophan of the dominating conformer is to the low-field β_{t}-proton but in the minor conformer to the high-field β_{2}-proton. However, chemical shifts cannot be used to distinguish pro- R and pro- $S \beta$-protons. ${ }^{1 \text { h. }}{ }^{43}$ Thus only the relative populations of the rotamer type III ($\chi_{1}=$ $+60^{\circ}$) can be determined without ambiguity. However, the small differences between the coupling constants of the two conformers of the cyclic peptide suggest that the dominant side-chain conformations could be similar. In the case of valine the α, β-coupling constants differ by 1.5 Hz , and in the minor conformer the rotamer in which α - and β-protons are antiperiplanar ($\chi_{1}=180^{\circ}$) is significantly less populated (17% instead of 31%).

Refinement of the Conformation by MD CaIculation. Conformational refinement by molecular dynamics simulations is nowadays routinely done especially for small cyclic peptides. However, structural refinement of the minor (only 6% populated) conformer was not a trivial task. Because of the low population, only short proton-proton distances gave rise to detectable cross-peaks in the ROESY and NOESY spectra. The volume integrals of these cross-peaks have a considerable uncertainty due to the noise in the spectra. Additionally, errors due to exchange of magnetization cannot always be excluded. Nevertheless, the basic conformation is very much determined by the cis peptide bond as showed up during this refinement.

Similar to the conformational refinement of the major populated conformer, the effective charges of the amide protons where reduced according to the temperature dependences of the chemical shifts. The effective charge of $\mathrm{val}^{3}-\mathrm{H}_{\mathrm{N}}(-\Delta \delta / \Delta T=1.0 \mathrm{ppb} / \mathrm{K})$ (Table IV) was retained, that of $\operatorname{trp}^{5}-\mathrm{H}_{\mathrm{N}}(-\Delta \delta / \Delta T=5.8 \mathrm{ppb} / \mathrm{K})$ was reduced to a fourth, and all others were interpolated.

The conformationally relevant NMR parameters showed a structural similarity between the two conformers in one part of the molecule. Both conformers exhibit a $\beta \mathrm{II}^{\prime}$ turn with phenylalanine 6 in position i. However, the other hemisphere is basically different as the lys $(Z)^{4}-\operatorname{trp}^{5}$ peptide bond is cis configurated in the 6% populated conformer. In order to get an appropriate starting structure, the force constant of the lys ${ }^{4}-\mathrm{H}_{\alpha}-\operatorname{trp}^{5}-\mathrm{H}_{\alpha}$ distance constraint was increased by one order of magnitude. An MD simulation over a few picoseconds yielded a starting structure that was basically compatible with the NMR parameters. Subsequently a MD simulation was carried out as outlined for the major populated conformer. As the distance information was not as accurate as for the 94% populated conformer, the force constants of the distance pseudopotential were reduced to only 500 $\mathrm{kJ} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~nm}^{-1}$ (cf. Experimental Section). Additionally, the side chains were not fixed as the major populated rotamers could not be determined unambiguously. Nevertheless, it was checked after the MD simulation that the adopted orientation was not in contradiction with the experimental results.

The crucial step in structural refinement of NMR derived structures is the calibration of volume integrals to distances. As none of the conventional calibration methods could be applied here, the distances were set as follows. A strong Overhauser effect between ala ${ }^{1}-\mathrm{H}_{\alpha}$ and phe ${ }^{2}-\mathrm{H}_{\mathrm{N}}$ and the temperature dependences of the chemical shifts of the amide protons in that region indicated a β II' turn here. The $\mathrm{H}_{\alpha}-\mathrm{H}_{\mathrm{N}}$ distance should be about 210 pm and cannot be shorter than 205 pm . The strong ROE and NOE between lysine and tryptophan α-protons is typical for a $\beta \mathrm{VI}$ turn. Similar turns are found in peptides ${ }^{50}$ and proteins, usually with proline in position $i+2$; in protein structures, investigated by
(49) Wüthrich, K.; Billeter, M.; Braun, W. J. Mol. Biol. 1983, 169, 949-961.
(50) Kessler, H.; Bernd, M.; Kogler, H.; Zarbock, J.; Serensen, O.; Bodenhausen, G.; Ernst, R. R. J. Am. Chem. Soc. 1983, 105, 6944-6952.

Flgure 8. Ramachandran diagram of the averaged structures determined by MD calculations of the two conformers of VDA008. The capital letters indicate the amino acids of the major populated conformer while the others indicate those of the minor populated conformer. The circles show the areas of ideal turns $\left(\pm 20^{\circ}\right)$.

X-ray, the $\mathrm{H}_{\alpha}-\mathrm{H}_{\alpha}$ distances are about $191 \mathrm{pm}(\pm 10 \mathrm{pm}$ approximately). ${ }^{51,52}$ Both conditions could be fulfilled as shown in Table VII.

The average total potential energy of the minor populated conformer was $221 \mathrm{~kJ} / \mathrm{mol}$, thus rather close to the value of the major populated conformer. However, as the two simulations could not be carried out under identical conditions, the results cannot be compared directly. The few distance constrains available were basically satisfied in the MD simulation (Table VII). The lys ${ }^{4}-\mathrm{H}_{\alpha}-$ trp $^{5}-\mathrm{H}_{\alpha}$ distance is only 159 pm , which is a rather short distance. The deviations of the distance constraints were 10 pm on average with a total restrain energy of $19 \mathrm{~kJ} / \mathrm{mol}$.

In this conformer two hydrogen bridges are dominant (Table VIII): one is between phe ${ }^{6}-\mathrm{H}_{\mathrm{N}}$ and $\mathrm{val}^{3}-\mathrm{CO}$ within the β VI turn (94% populated) and the other is between $\mathrm{val}^{3}-\mathrm{H}_{\mathrm{N}}$ and phe ${ }^{6}-\mathrm{CO}$ within the $\beta \mathrm{II}^{\prime}$ turn (65% populated). In analogy with the major populated conformer, a hydrogen bridge between ala ${ }^{1}-\mathrm{H}_{\mathrm{N}}$ and trp^{5}-CO occurred. Also the corresponding hydrogen bridge is found between lys ${ }^{4}-\mathrm{H}_{\mathrm{N}}$ and phe ${ }^{2}-\mathrm{CO}$. The backbone angles of the β II' turn are close to those of an ideal turn (Figure 8, cf. Table IX). The β VI turn is determined by the cis peptide bond between the amino acids $i+1$ and $i+2$, but no "ideal angles" are available. The experimental φ angles and those found during the MD simulation are in reasonable agreement (Table IX). The side-chain conformations are identical with those of the major populated conformer. Though the structure is not defined precisely, the simulation satisfies the NMR parameters well enough to be a good approximation of the conformation in solution.

Comparison of the Two Conformations. In the case of proline containing cyclic hexapeptides the conformers with cis and trans configurated Xaa-Pro peptide bonds are usually basically different. ${ }^{1 \mathrm{j}, 43}$ This becomes apparent if one simply compares the temperature dependencies of the chemical shifts of the amide protons: major changes indicate a reorientation of the hydrogen bonds. The reason for reorientation is that proline often prefers the $i+1$ position of a β-turn (L -Pro, $\beta \mathrm{I}$; d-Pro, $\beta \mathrm{II}^{\prime}$). However, a cis peptide bond favors a β VI turn with L-Pro in the $i+2$ position, thus a shift of the hydrogen bonding in the cyclic peptide occurs. ${ }^{1 \mathrm{j}}$ The conformational parameters of both conformers of VDA008 do not indicate that (eg. Table IV). Obviously the
(51) Chou, P. Y.; Fasman, G. D. J. Mol. Biol. 1977, 115, 135-175.
(52) Nêmethy, G.; Sheraga, H. A. Biochem. Biophys. Res. Commun. 1980, 95, 320-327.

D-amino acid has a strong tendency to be in position $i+1$ of $\beta \mathrm{II}^{\prime}$ turn.

Comparison of the backbone angles of both conformers shows good agreement within the β II' turn region (Table IX). In the Ramachandran diagram (Figure 8) it is easier to visualize which amino acids have similar φ / ψ angle combinations. Additionally, angles of various ideal turns are given (differently hatched circles). One finds that $D-A^{1}$ and F^{2} have angles very close to those of an ideal $\beta 1 l^{\prime}$ turn (not to be confused with the area of a β I turn). Further K^{4} and W^{5} have angles close to that of an ideal β II turn; but W^{5} is at position $j+1$ of a γ turn as well. Figure 8 shows the large difference between the φ / ψ angles of tryptophan in the major and minor populated conformations. Valine also exhibits a distinct difference. The prominent cis configurated lysinetryptophan peptide bond can be seen in Figure 7 (below). Comparison of various analogue peptides ${ }^{1,53}$ indicates that the valine in position 3 is responsible for that trans-cis isomerization. The $\mathrm{H}_{\alpha}, \mathrm{H}_{\beta}$ coupling constant of valine is significantly smaller in the minor populated conformer than in the major populated conformer (Table III). Hence the steric environment must be different in both conformers. The side-chain conformation of valine 3 shown here need not be the dominant conformation in solution. Apparently the rather bulky side chain of valine has a strong influence on the overall conformation. However, one should keep in mind that the solvent and even traces of water in a sample probably do have an influence on the equilibrium between the conformers. This property has been demonstrated with peptides that are soluble in more than one solvent. ${ }^{54}$

Experimental Section

Synthetic Methods. Boc-Trp-Phe-d-Ala-Phe-Val-Lys(Z)- $\mathbf{N}_{2} \mathbf{H}_{3}$ (\boldsymbol{M}_{5} 1045). Esterification of Boc-Lys(Z)-OCs to chloromethylated poly-styrene- 1% divinylbenzene ${ }^{5 s}$ yielded a resin with a capacity of 0.8 mmol of amino acid $/ \mathrm{g}$. Then $5.5 \mathrm{~g}(4.4 \mathrm{mmol})$ of resin were used for solidphase synthesis, which was carried out with a manual shaking apparatus. Boc cleavage proceeded within 30 min through a single treatment with 5 mL of trifluoroacetic acid and 0.25 mL of methane sulfonic acid in 40 mL of dichloromethane. After neutralization of the amino trifluoroacetic acid salt with excess diisopropylethylamine in dichloromethane, each coupling was performed with 10 mmol of Boc-amino acid, 10 mmol of dicyclohexylcarbodiimide, and 10 mL of 1 -hydroxybenzotriazole in 45 mL of dichloromethane; the coupling time was 2 h . For coupling of Boc-Trp-OH, diisopropylcarbodiimide was used instead of dicyclohexylcarbodiimide. After several washing steps, hydrazinolysis was carried out overnight in the shaking vessel by using 5 mL of hydrazine in 50 mL of dimethylacetamide. The resin was then filtered off and washed well with dimethylacetamide, and the combined solutions were evaporated in vacuo. Precipitation of the product occurred by addition of water: yield after drying, $3.68 \mathrm{~g}(3.5 \mathrm{mmol}, 80 \%$ of theory); mp $140-143^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}-18.5(c=1$, dimethylformamide $)$; single spots in TLC; corrcct ${ }^{1} \mathrm{H}$ NMR spectrum.

H-Trp-Phe-D-Ala-Phe-Val-Lys(Z)- $\mathrm{N}_{2} \mathrm{H}_{3} \cdot 2$ (triffuoroacetic acid) ($\boldsymbol{M}_{\mathrm{r}}$ 1173). Final Boc cleavage was achieved by treatment of 2.0 g of Boc-Trp-Phe-D-Ala-Phe-Val-Lys(Z)- $\mathrm{N}_{2} \mathrm{H}_{3}$ (1.91 mmol) with 9 mL of neat trifluoroacetic acid for 30 min . Precipitation of the product occurred by addition of ether: yield, 2.17 g ($1.85 \mathrm{mmol}, 97 \%$ of theory); mp 152-154 ${ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-4.1\left(c=1\right.$, methanol); single spots in TLC; correct ${ }^{\mathrm{t}} \mathrm{H}$ NMR spectra.
cyclo (-Trp-Phe-D-Ala-Phe-Val-Lys(Z)-) ($\boldsymbol{M}_{\mathrm{r}}$ 913). For azide cyclization, 1.27 g of the deprotected peptide (1.08 mmol) was treated with 0.44 mL of concentrated HCl and 0.22 mL of isopentyl nitrite in 5 mL of dimethylformamide for 120 min at -30 to $-15^{\circ} \mathrm{C}$; this solution was then diluted with 1 L of cold dimethylformamide and kept for 5 days at $4^{\circ} \mathrm{C}$ after addition of 1.30 mL of diisopropylethylamine. Evaporation of the solvent was then followed by treatment with mixed bed ion exchange resin and gel chromatography on sephadex LH 20. Cyclization yield, $0.80 \mathrm{~g}(0.87 \mathrm{mmol}, 81 \%$ of theory); final purification by HPLC (Nucleosil C $18,5 \mu \mathrm{~m}, 16 \times 250 \mathrm{~mm}$, UV 254 nm , flow rate $5 \mathrm{~mL} / \mathrm{min}$, 60% acetonitrile/water); mp $126-130^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-51.0(c=0.5$, methanol); TLC, $R_{f} n$-butanol/acetic acid/ $\mathrm{H}_{2} \mathrm{O}$ (3:1:1) 0.91, ethyl acetate/ $\mathrm{CHCl}_{3} /$ methanol (4:2:1) $0.35, \mathrm{CHCl}_{3} /$ methanol/acetic acid (80:20:3)

[^6]0.88 , ethyl acetate $/ n$-butanol/pyridine $/ \mathrm{H}_{2} \mathrm{O}(20: 10: 3: 5) 0.93$; FAB-MS, $914\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

NMR Methods. Proton and carbon spectra were recorded on Bruker spectrometers (AM 250, WH 270, AM 500, AM 600) and processed on Bruker work stations with Aspect 1000 or X32 computers. For the proton spectra a degassed 64 mM sample of VDA008 in a $5-\mathrm{mm}$ tube was used if not otherwise stated. For the heteronuclear experiments a nondegassed 60 mM sample in a $10-\mathrm{mm}$ tube was used. All spectra were recorded at 300 K .

DQF-H,H-COSY (250 MHz): : $^{25.26}$ pulse sequence $\pi / 2_{\varphi}-t_{1}-\pi /$ $2_{\varphi}-\Delta_{1}-\pi / 2-$ acq.; 610 experiments of 2 dummy-scans and 48 scans each, relaxation delay 1.5 s , acquisition time for one $\operatorname{scan} 0.8 \mathrm{~s}, \Delta_{1}=4 \mu \mathrm{~s}$, complex size 4 K , spectral width in F_{2} and $F_{1} 2564 \mathrm{~Hz}$, zerofilling in F_{1} to 2 K , apodization in both dimensions with squared sinebell shifted by $\pi / 3$.

TOCSY ($\mathbf{2 5 0} \mathbf{~ M H z)}$) ${ }^{29,30}$ pulse sequence $\pi / 2-t_{1}-$ MLEV-17-acq.; 580 experiments of 2 dummy-scans and 56 scans each, relaxation delay 1.5 s , acquisition time for one scan $0.8 \mathrm{~s}, 5 \mathrm{kHz}$ MLEV- 17 spin-lock with 30.6 ms mixing time, complex size 4 K , spectral width in F_{2} and $F_{1} 2564$ Hz , zerofilling in F_{1} to 2 K , a podization in both dimensions and squared sinebell shifted by $\pi / 2$.

ROESY (250 MHz): ${ }^{21-23}$ pulse sequence $\pi / 2-t_{1}-(\beta-\tau)_{n}-$ acq.; 750 experiments of 2 dummy-scans and 56 scans each, relaxation delay 1.8 s , acquisition time for one scan $0.7 \mathrm{~s}, 2 \mathrm{kHz}$ spin-lock with 100 ms mixing time, $\beta=13^{\circ}$, complex size 4 K , spectral width in F_{2} and $F_{1} 3145 \mathrm{~Hz}$, zerofilling in F_{1} to 2 K , apodization with squared sinebell shifted by $\pi / 3$ $\left(F_{1}\right)$ and $\pi / 2\left(F_{2}\right)$.

NOESY (500 MHz): ${ }^{24}$ pulse sequence $\pi / 2-t_{1}-\pi / 2-\Delta_{1}-\pi / 2-\mathrm{acq} ; 700$ experiments of 2 dummy-scans and 32 scans each, relaxation delay 2.5 s , acquisition time for one scan $0.4 \mathrm{~s}, 200 \mathrm{~ms}$ mixing time with a maximum of $\pm 20 \mathrm{~ms}$ random variation, complex size 4 K , spectral width in F_{2} and $F_{1} 5050 \mathrm{~Hz}$, zerofilling in F_{1} to 2 K , apodization with squared sinebell shifted by $\pi / 2\left(F_{1}\right)$ and $\pi / 3\left(F_{2}\right)$.

H,C-COLOC ($\mathbf{3 0 0} \mathbf{~ M H z) : ~}{ }^{31}$ carbonyl carbon resonances observed; pulse sequence $\pi / 2\left({ }^{1} \mathrm{H}\right)-t_{4} / 2-\pi\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)-\left[\Delta_{1}-t_{1} / 2\right]-\pi / 2\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)-\Delta_{2}-$ acq. $\left({ }^{13} \mathrm{C},{ }^{1} \mathrm{H}=\mathrm{CPD}\right) ; 150$ experiments of 2 dummy-scans and 128 scans each, relaxation delay 2.2 s , acquisition time for one scan $1.2 \mathrm{~s}, \Delta_{1}=25$ $\mathrm{ms}, \Delta_{2}=30 \mathrm{~ms}$, complex size 0.5 K , spectral width in $F_{2} 206 \mathrm{~Hz}$ and in $F_{1} 3030 \mathrm{~Hz}$, zerofilling in F_{1} and F_{2} to 2 K , apodization in F_{2} with line broadening of 2 Hz and in F_{1} with unshifted sinebell, power spectrum.

Molecular Dynamics Calculations. The program used was GROMOS. ${ }^{45}$ The distances were used in an unsymmetrical pseudopotential as constraints. ${ }^{48}$ The force constant for the upper distance range of the pseudopotential was $K_{\mathrm{dc}}=2000 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~nm}^{-2}$, and it was iwice as large for the lower range (for the minor conformer a fourth of these values were used). The MD calculation was carried out over 50 ps in 0.02 -ps steps. During the first picosecond strong coupling to a thermal bath of 1000 K was applied (temperature relaxation time $=0.01 \mathrm{ps}$). Afterwards, the temperature was lowered stepwise to 300 K and the thermal coupling reduced (temperature relaxation time 0.1 ps). These first 10 ps were used for equilibration of the molecule. The following 40 ps were used for averaging. The averaged structure was relaxed by two energy minimization steps (EM).

Acknowledgment. The authors are indepted to E. Lichte for the purification of VDA008 by HPLC. We thank Dr. W. Bermel of Bruker Analytische Messtechnik GmbH for the time on the AM600 to record the E.COSY. Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Dr. W. van Gunsteren for the GROMOS package. MD calculations were performed on a VAX 8300 of the Institut für Organische Chemie, which was supported by a grant of the Bundesministerium für Forschung und Technologie.

Registry No. Boc-Lys(z)-OCs, 77236-12-5; Boc-Trp-OH, 13139-14-5; Boc-Val-OH, 13734-41-3; Boc-Phe-OH, 13734-34-4; Boc-D-Ala-OH, 7764-95-6; Boc-Trp-Phe-d-Ala-Phe-Val-Lys(z)- $\mathrm{N}_{2} \mathrm{H}_{3}$, 127819-50-5; H-Trp-Phe-D-Ala-Phe-Val-Lys(z)- $\mathrm{N}_{2} \mathrm{H}_{3} \cdot 2$ TFA, 127819-52-7; cyclo(-Trp-Phe-D-Ala-Phe-Val-Lys(z)-), 127819-53-8.

Supplementary Material Available: DEPT-H,C-COSY spectrum of the aliphatic region, the $\mathrm{H}_{\alpha}, \mathrm{H}_{\mathrm{N}}$ region of a DQF-H,HCOSY spectrum showing cross-peaks of the minor conformer in detail, the $\mathrm{H}_{\beta}, \mathrm{H}_{\alpha}$ region of a complementary E.COSY showing cross-peaks of the minor conformer as well, amide regions of three ID spectra of samples of different concentrations of VDA008, and the averaged coordinates of the two conformers (10 pages). Ordering information is given on any current masthead page.

[^0]: * Present address: Organisch-chemisches Institut, Technische Universităt München. Lichtenbergstrasse 4 D-8046 Garching, FRG.
 ${ }^{\dagger}$ Abbreviations: E. COSY, exclusive correlated spectroscopy; DEPT-H,-C-COSY, distorsionless enhancement by polarization transfer heteronuclear correlated spectroscopy; DQF-H,H-COSY, double quantum filtered proton correlated spectroscopy; H,C-COLOC, heteronuclear correlation via longrange couplings; NOE, nuclear Overhauser effect/enhancement; NOESYnuclear Overhauser and exchange spectroscopy; ROE, rotating frame NOE; ROESY, rotating frame Overhauser and exchange spectroscopy, TOCSY, total correlation spectroscopy; Boc tert-butoxycarbonyl; Z, benzyloxycarbonyl.

[^1]: (7) Sutherland, I. O. Ann. Rep. NMR 1971, 4, 71.
 (8) Jackman, L. M. Dynamic Nuclear Magnetic Resonance Spectroscopy; Jackman, L. M., Cotton, F. A., Eds.; Academic Press: New York, 1975; pp 203-252.
 (9) Oki, M. Application of Dynamic NMR Spectroscopy to Organic Chemistry; VCH Verlagsgesellschaft: Weinheim, FRG, 1985; pp 4377.
 (10) Drakenberg, T.; Forsēn, G. J. Chem. Soc., Chem. Commun. 1971, 1404-1405.
 (11) Kessler, H.; Rieker, A. Liebigs Ann. Chem. 1967, 708, 57-68.
 (12) (a) Dale, J.; Titlestad, K. Tetrahedron Lett. 1978, 4, 379-380. Rothe, M.; Fähnle, M.; Wermuth, S. Peptides 1984; Ragnersson, U., Ed.; Almqvist and Wiksell: Stockholm, Sweden, 1984; pp 573-576. (b) Mierke, D. F.; Yamazaki, T.; Said-Nejad, O. E.; Felder, E. R.; Goodman, M. J. Am. Chem. Soc. 1989, $111,6847-6849$.
 (13) Bairaktari, E.; Mierke, D. F.; Mammi, S.; Peggion, E. Second Naples Workshop on Bioactive Peptides; Capri, Italy, May 21-23, 1990.
 (14) Dorman, D. E.; Bovey, F. A. J. Org. Chem. 1973, 38, 2379-2383.
 (15) See e.g. in Cyclosporin.
 (16) Branik, M.; Kessler, H. Chem. Ber. 1975, 108, 2176-2188, 2722-2727.
 (17) Barany, G.; Merrifield, R. B. The Peptides; Gross, E., Meienhofer, J., Eds.; Academic Press: New York, 1980; Vol. II, pp 1-284.
 (18) Klausner, Y. S.; Bodanszky, M. Synthesis 1974, 549-559
 (19) Barany, G.; Kneib-Cordonier, N.; Mullen, D. G. Int. J. Peptide Protein Res. 1987, 30, 705-739.
 (20) Kessler, H.; Haupt, A.; Frimmer, M.; Ziegler, K. Int. J. Peptide Protein Res. 1987, 29, 621-628.

[^2]: (21) Bothner-By, A. A.; Stephens, R. L.; Lee, J.; Warren, C. D.; Jeanloz, R. W. J. Am. Chem. Soc. 1984, 106, 81 1-813.
 (22) Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 63, 207-21 3.
 (23) Kessler, H.; Griesinger, C.; Kerssebaum, R.; Wagner, K.; Ernst, R. R. J. Am. Chem. Soc. 1987, 109, 607-609.

[^3]: (24) Jeener, J.; Meier, B. H.; Bachmann, P.; Ernst, R. R. J. Chem. Phys. 1979, 71, 4546-4553.
 (25) Piantini, U.; Sorensen, O. W.; Ernst, R. R. J. Am. Chem. Soc. 1982, 104, 6800-6801.
 (26) Rance, M.; Sørensen, O. W.; Bodenhausen, G.; Wagner, G.; Ernst, R. R.; Wüthrich, K. Biochem. Biophys. Res. Commun. 1983, 117, 458-479.
 (27) Wüthrich, K. NMR of Proteins and Nucleic Acids; John Wiley \& Sons: New York, 1986.
 (28) Kessler, H.; Bermel, W. NMR in Stereochemical Analysis; Takeuchi, Y., Marchand, A. P., Eds.; VCH Publishers, Inc.: Deerfield Beach, 1986; pp 179-205.
 (29) Braunschweiler, L.; Ernst, R. R. J. Magn. Reson. 1983, 53, 521-528.
 (30) Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 65, 355-360.
 (31) Kessler, H.; Griesinger, C.; Zarbock, J.; Loosli, H. R. J. Magn. Reson. 1984, 57, 331-340.

[^4]: (32) Levitt, M. H.; Serensen, O. W.; Ernst, R. R. Chem. Phys. Lett. 1983, 94, 540-544.
 (33) Bendall, M. R.; Pegg, D. T. J. Magn. Reson. 1983, 53, 144-148.
 (34) Pegg, D. T.; Bendall, M. R. J. Magn. Reson. 1983, 55, 114-127.
 (35) Nakashima, T. T.; John, B. K.; McClung, R. E. D. J. Magn. Reson. 1984, 59, 124-131.
 (36) Karplus, M. J. J. Chem. Phys. 1959, 30, 11-15.
 (37) Bystrov, V. F. Prog. Nucl. Magn. Reson. Spectrosc. 1976, 10, 41-81.
 (38) Kessler, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 512-523.
 (39) Pardi, A.; Billeter, M.; Wüthrich, K. J. Mol. Biol. 1984, 180 741-751.
 (40) Pachler, K. G. R. Spectrochim. Acta 1963, 19, 2085-2092; 1964, 20, 581-587.
 (41) Griesinger, C.; Sorensen, O. W.; Ernst, R. R. J. Am. Chem. Soc. 1985, 107, 6394-6396.
 (42) Griesinger, C.; Sørensen, O. W.; Ernst, R. R. J. Chem. Phys. 1986, 85, 6837-6852.

[^5]: (43) Kessler, H.; Griesinger, C.; Wagner, K. J. Am. Chem. Soc. 1987, 109, 6927-6933.
 (44) Anders, U.; Gemmecker, G.; Kessler, H.; Griesinger, C. Fresenius, Z. Anal. Chem. 1987, 327, 72-73.
 (45) Gronigen Molecular Simulation (GROMOS), Biomos B.V., Groningen (1987), W.F. van Gunsteren and H.J.C. Berendsen, Nijenborgh, 16, NL 9747 AG Groningen.

[^6]: (53) Kessler, H.; Haupt, A.; Klein, M.; Wagner, K. Peptides 1986; Theodoropoulos, D., Ed.; Walter de Gruyter: Berlin, FRG, 1987; pp 327-330. (54) Kopple, K. D.; Sarkar, S. K.; Giacometti, G. Biopolymers 1981, 20, 1291-1303.
 (55) Gisin, B. F. Helu. Chim. Acta 1973, 56, 1476-1482.

